
WiredTiger Backend for OpenLDAP

Open Source Solution Technology Corporation
HAMANO Tsukasa <hamano@osstech.co.jp>

June 25, 2015

Abstract

This paper introduces WiredTiger backend for
OpenLDAP. WiredTiger is an embedded database
having the characteristics of multi-core scalability
and lock-free algorithms. We implemented a new
OpenLDAP backend called back-wt that is using
WiredTiger database and then measured the per-
formance.

1 Motivation

BerkeleyDB is a legacy embedded database. The
write performance of back-bdb(OpenLDAP back-
end using BerkeleyDB) is painfully slow and not
scalable. If we use asynchronous mode in order
to improve the write performance, data durability
will be sacrificed. The WiredTiger backend will
bring about high write performance and high con-
currency performance for OpenLDAP.

2 Data Structure

First, we had to choose data structure either plain
structure such as back-bdb or hierarchical structure
such as back-hdb. If we choose the plain structure,
sub scope search is fast but modrdn and add op-
erations need some cost. The plain structure need
many @prefix entries for sub scope search, and
also %prefix entries are needed. If we choose the
hierarchical structure, modrdn is fast but lookup
and add operations need some cost.

Figure 1: Plain structure vs Hierarchical structure

We followed basically plain data structure but
we made some enhancements to the data struc-
ture for performance and database footprint. Be-
fore adding an entry, we reversed the DN per RDN
and then added the Reverse DN as the key into
WiredTiger’s B-Tree table. At this point, entries
are sorted by Reverse DN, So we can search rapidly
with a sub scope using WiredTiger’s range search.
The range search method is low cost that only needs
WT CURSOR::search near() and increment cursor
operations for this purpose.

Figure 2: Making Reverse DN

1



Figure 3: back-wt data structure

3 Current Status

• slapadd, slapcat, slapindex have been imple-
mented.

• LDAP BIND, ADD, DELETE and SEARCH
have been implemented.

• MODIFY and MODRDN have not been not
implemented yet.

• deref search has not been implemented yet.

• WiredTiger does not support multiprocess ac-
cess yet. It means that we can’t do slapcat
while running slapd at the moment. However,
WiredTiger is planning to support RPC in the
future. If it is realized, we can do hot-backup
while avoiding multi-process locking.

• We do not implement entry cache similar to
back-bdb. It’s not absolutely necessary since
WiredTiger cache is fast enough.

• back-wt used B-Tree table. We will test LSM
table in the future.

4 Benchmarking

We have measured benchmarks that focus on con-
currency performance. We use benchmarking tool
called lb.1 See our wiki page for detail of bench-
marks.2

1https://github.com/hamano/lb
2https://github.com/osstech-jp/openldap/wiki/

back_wt-benchmark

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1  2  4  8  16  32  64

R
e
q
u
e
s
ts

 p
e
r 

s
e
c
o
n
d

Concurrency Level

back-wt req/sec

back-bdb req/sec

Figure 4: LDAP ADD Benchmarking

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1  2  4  8  16  32  64

R
e
q
u
e
s
ts

 p
e
r 

s
e
c
o
n
d

Concurrency Level

back-wt req/sec

back-bdb req/sec

Figure 5: LDAP BIND Benchmarking

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 1  2  4  8  16  32  64

R
e
q
u
e
s
ts

 p
e
r 

s
e
c
o
n
d

Concurrency Level

back-wt req/sec

back-bdb req/sec

Figure 6: LDAP SEARCH Benchmarking

4.1 Analysis

• We used 2x6-Core CPU(24-Hyper-Threading).
We may get more scalability on more CPUs.

• The ADD graph is not broken. back-wt is
faster overwhelmingly.

• The read performance is same level. However,
it is necessary to consider that we did not im-
plement entry cache to back-wt.

2

https://github.com/hamano/lb
https://github.com/osstech-jp/openldap/wiki/back_wt-benchmark
https://github.com/osstech-jp/openldap/wiki/back_wt-benchmark

	1 Motivation
	2 Data Structure
	3 Current Status
	4 Benchmarking
	4.1 Analysis


